CMOS 8-bit Single Chip Microcomputer

Description

The CXP84716/84720/84724 is a CMOS 8-bit microcomputer integrating on a single chip an A/D converter, serial interface, timer/counter, time base timer, capture timer/counter, FRC capture unit, high-precision timing pattern generation circuit, PWM output, and the like besides the basic configurations of 8 -bit CPU, ROM, RAM, and I/O port.
The CXP84716/84720/84724 also provides the sleep/stop functions that enable to execute the poweron reset function and lower the power consumption.

Structure

Silicon gate CMOS IC

Features

- A wide instruction set (213 instructions) which covers various types of data.
- 16-bit arithmetic/multiplication and division/Boolean bit operation instructions
- Minimum instruction cycle
- Incorporated ROM capacity
- Incorporated RAM capacity
- Peripheral functions
- A/D converter
- Serial interface
— Timer
- FRC capture unit
- High-precision timing pattern generation circuit
- PWM output
- Interruption
- Standby mode
- Package
- Piggyback/evaluator

PPG: maximum of 11 pins, 16 stages programmable, 2 channels
250 ns at 16 MHz operation (4.5 to 5.5 V) 333 ns at 12 MHz operation (3.0 to 5.5 V)
16K bytes (CXP84716)
20K bytes (CXP84720)
24K bytes (CXP84724)
1120 bytes

8 bits, 8 channels, successive approximation method
(Conversion time $1.6 \mu \mathrm{~s}$ at 16 MHz)
Srart-stop synchronization (UART), 1 channel Incorporated buffer RAM (Auto transfer for 1 to 32 bytes), 2 channels 8 -bit clock syncronization (MSB/LSB first selectable), 1 channel 8-bit timer, 8-bit timer/counter, 19-bit time base timer, 16-bit capture timer/counter
Incorporated 24-bit and 6-stage FIFO

8 bits, 8 channels
19 factors, 15 vectors, multi-interruption possible
Sleep/stop
100-pin plastic QFP/LQFP
CXP84700

[^0]Block Diagram

Pin Assignment (Top View) 100-pin QFP package

Note) 1. NC (Pin 90) is left open.
2. Vss (Pins 41 and 88) are both connected to GND.

Pin Assignment (Top View) 100-pin LQFP package

Note) 1. NC (Pin 88) is left open.
2. Vss (Pins 39 and 86) are both connected to GND.

Pin Description

Symbol	1/0		Description
$\begin{gathered} \text { AN0 } \\ \text { to } \\ \text { AN3 } \end{gathered}$	Input	Analog inputs to A/D converter. (4 pins)	
PAO/AN4 to PA3/AN7	I/O/Input	(Port A) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	Analog inputs to A/D converter. (4 pins)
PA4 to PA7	1/O		
PB0/CINT	I/O/Input	(Port B) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	External capture input to 16 -bit timer/counter.
PB1 to PB3	I/O		
PB4/CS1	I/O/Input		Chip select input for serial interface (CH1).
PB5/SCK1	1/O///O		Serial clock I/O (CH1).
PB6/S11	I/O/Input		Serial data input (CH1).
PB7/SO1	I/O/Output		Serial data output (CH1).
PC0 to PC7	I/O	(Port C) 8 -bit I/O port. I/O can be set in a unit of single bits. Can drive 12 mA sink current. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	
$\begin{array}{\|c} \text { PD0/PPO0 } \\ \text { to } \\ \text { PD7/PPO7 } \end{array}$	1/O/Real-time output	(Port D) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. Data is gated with PPO contents by OR-gate and they are output. (8 pins)	PPOO to PPO7 outputs for programmable pattern generator (PPGO). Functions as high-precision real-time pulse output port. (PPG0: 11 pins; PPG1: 11 pins)
PE0/EC0	Input/Input	(Port E) 8 -bit port. Lower 5 bits are for input; upper 2 bits are for output. (8 pins)	External event inputs for timer/counter. (2 pins)
PE1/EC1	Input/Input		
PE2	Input		
PE3/\MI	Input/Input		Non-maskable interruption request.
PE4 to PE5	Input		
PE6	Output		
PE7/TO	Output/Output		Rectangular wave output for 16-bit timer/counter.

Symbol	I/O		Description
PF0 to PF5	I/O	(Port F) Lower 6 bits are for I/O. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits (PF0 to PF3) or 2 bits (PF4,PF5) PF6 is for output; PF7 is for input. (8 pins)	
PF6/TxD	Output/Output		UART transmission data output.
PF7/RxD	Input/Input		UART reception data input.
PG0/PWM0 to PG7/PWM7	I/O/Output	(Port G) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	PWM outputs. (8 pins)
$\begin{gathered} \text { PH0/PPO8 } \\ \text { to } \\ \text { PH7/PPO15 } \end{gathered}$	I/O/Real-time output	(Port H) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. Data is gated with PPO contents by OR-gate and they are output. (8 pins)	PPO8 to PPO11 (PPGO) outputs and PPO12 to PPO15 (PPG1) outputs for programmable pattern generator (PPGO, PPG1). Functions as high-precision real-time pulse output port.
$\begin{gathered} \text { PIO/INT0 } \\ \text { to } \\ \text { PI4/INT4 } \end{gathered}$	I/O/Input	(Port I) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	External interruption request inputs. (5 pins)
PI5/\CK2	1/0///O		Serial clock 1/O (CH2).
Pl6/SI2	I/O/Input		Serial data input (CH2).
PI7/SO2	I/O/Output		Serial data output (CH2).
$\begin{gathered} \text { PJo/PPO16 } \\ \text { to } \\ \text { PJ5/PPO21 } \end{gathered}$	I/O/Real-time output	(Port I) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. Data is gated with PPO contents by OR-gate and they are output. (8 pins)	PPO16 to PPO21 outputs for programmable pattern generator (PPG1). Functions as high-precision real-time pulse output port.
PJ6/EXIO	I/O/Input		External inputs to FRC capture unit.
PJ7/EXI1	I/O/Input		(2 Pins)
EXI2 to EXI3	Input	External inputs to FRC capture unit. (2 pins)	
$\overline{\text { CSO }}$	Input	Chip select input for serial interface (CH0).	
$\overline{\text { SCKO }}$	I/O	Serial clock I/O (CHO).	
SIO	Input	Serial data input (CHO).	
SO1	I/O/Output	Serial data I/O (CHO).	

Symbol	I/O	Description		
EXTAL	Input	Connects a crystal for system clock oscillation. When a clock is supplied externally, input it to EXTAL pin and input a reversed phase clock to XTAL pin.		
XTAL	Output	I/O		System reset; active at Low level. This pin is I/O pin, and outputs Low
:---				
level at the power on with the power-on reset function is executed. (Mask				
option)	.			

I/O Circuit Format for Pins

Pin	Circuit format		When reset
PAO/AN4 to PA3/AN7 4 pins			Hi-Z
PA4 to PA7 PB1 to PB3 PF0 to PF5 $13 \text { pins }$	$\begin{aligned} & \hline \text { Port A } \\ & \hline \text { Port B } \\ & \hline \text { Port F } \\ & \hline \end{aligned}$		Hi-Z
PBO/CINT PB4/CS1 PB6/SI1 PI6/SI2 PJ6/EXIO PJ7/EXI1 6 pins	Port B Port I Port J		Hi-Z

\begin{tabular}{|c|c|c|}
\hline Pin \& Circuit format \& When reset \\
\hline \begin{tabular}{l}
PB5/SCK1 PI5/SCK2 \\
2 pins
\end{tabular} \& \& Hi-Z \\
\hline \begin{tabular}{l}
PB7/SO1 PI7/SO2 \\
2 pins
\end{tabular} \& \& Hi-Z \\
\hline PC0 to PC7

8 pins \& \& Hi-Z

\hline
\end{tabular}

Pin	Circuit format	When reset
PDO/PPOO to PD7/PPO7 PH0/PPO8 to PH7/PPO15 PJo/PPO16 to PJ5/PPO21 22 pins		Hi-Z
PE0/EC0 PE1/EC1 PE2 \qquad PE3/NM PE4 PE5 PF7/RxD 7 pins		Hi-Z
PE6 1 pin	Port E	High level
PE7/TO 1 pin	Port E	$\begin{gathered} \text { High level } \\ \left(\begin{array}{c} \text { with the } \\ \text { resistor of pull- } \\ \text { up transistor } \\ \text { ON for reset } \end{array}\right) \end{gathered}$

Pin	Circuit format	When reset
PF6/TxD 1 pin	Port F	High level
PGO/PWMO to PG7/PWM7 8 pins		Hi-Z
PIO/INTO to P14/INT4 5 pins	Port I	Hi-Z
$\begin{gathered} \text { ANO } \\ \text { to } \\ \text { AN3 } \\ 4 \text { pins } \end{gathered}$		Hi-Z

Pin	Circuit format	When reset
$\begin{gathered} \text { EXI2 } \\ \text { EXI3 } \\ 2 \text { pins } \end{gathered}$		Hi-Z
$\begin{aligned} & \overline{\text { CSO }} \\ & \text { SIO } \\ & 2 \text { pins } \end{aligned}$		Hi-Z
$\begin{aligned} & \text { SOO } \\ & 1 \text { pin } \end{aligned}$		Hi-Z
SCKO 1 pin		Hi-Z
EXTAL XTAL 2 pins		Oscillation
$\overline{R S T}$ 1 pin		Low level

Absolute Maximum Ratings
(Vss = OV reference)

Item	Symbol	Rating	Unit	Remarks
Supply voltage	Vdo	-0.3 to +7.0	V	
	AVDD	AVss to +7.0 * ${ }^{\text {d }}$	V	
	AVss	-0.3 to +0.3	V	
	AVREF	AVss to +7.0	V	
Input voltagte	VIN	-0.3 to +7.0 *2	V	
Output voltage	Vout	-0.3 to $+7.0^{* 2}$	V	
High level output current	Іон	-5	mA	Output (value per pin)
High level total output current	Г lo	-50	mA	Total for all output pins
	IoL	15	mA	All pins excluding large current outputs (value per pin)
Low level output current	lolc	20	mA	Large current outputs (value per pin) *3
Low level total output current	EloL	100	mA	Total for all output pins
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	
Allowable power dissipation	Pd	600	mW	QFP package
		380		LQFP package

${ }^{* 1} \mathrm{~A} V_{D D}$ and $V_{D D}$ must be set to the same voltage.
*2 Vin and Vout must not exceed VdD +0.3 V .
*3 The large current output pins are Port C (PC).
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should be conducted under the recommended operating conditions. Exceeding these conditions may adversely affect the reliability of the LSI.

Recommended Operating Conditions
(Vss = OV reference)

Item	Symbol	Min.	Max.	Unit	Remarks	
Supply voltage	Vdo	4.5	5.5	V	$\mathrm{fc}=16 \mathrm{MHz}$ or less	Guaranteed operation range for $1 / 2$ and $1 / 4$ frequency dividing clock.
		3.0	5.5	V	$\mathrm{fc}=12 \mathrm{MHz}$ or less	
		2.7	5.5	V	Guaranteed operation range for 1/16 frequency dividing clock or sleep mode	
		2.7	5.5	V	Guaranteed data hold operation range during stop mode	
Analog voltage	AVdd	3.0	5.5	V	${ }^{*} 1$	
High level input voltage	VIн	0.7VdD	VdD	V	*2, *5	
		0.8VDD	VDD	V	*2, *6	
	VIHS	0.8 VDD	VdD	V	Hysteresis input*3	
	VIhex	Vdd-0.4	VdD +0.3	V	EXTAL pin*4, *5	
		Vdo-0.2	VdD +0.2	V	EXTAL pin ${ }^{4, * 6}$	
Low level input voltage	VIL	0	0.3Vdd	V	*2, *5	
		0	0.2 VdD	V	*2, *6	
	VILS	0	0.2 VdD	V	Hysteresis input*3	
	VILEX	-0.3	0.4	V	EXTAL pin*4, *5	
		-0.3	0.2	V	EXTAL pin*4, *6	
Operating temperature	Topr	-20	+75	${ }^{\circ} \mathrm{C}$		

*1 $A V_{D D}$ and $V_{D D}$ must be set to the same voltage.
*2 Normal input port (PA, PB1 to PB3, PB7, PC, PD, PE2, PE4, PE5, PF0 to PF5, PG, PH, PI7, PJ0 to PJ5)
*3 $\overline{\mathrm{RST}}, \mathrm{CINT}, \overline{\mathrm{CS} 0}, \overline{\mathrm{CS} 1}, \overline{\mathrm{SCKO}}, \overline{\mathrm{SCK} 1}, \overline{\mathrm{SCK} 2}, \mathrm{SI0}, \mathrm{SI} 1, \mathrm{SI2}, \overline{\mathrm{EC0}}, \overline{\mathrm{EC} 1}, \overline{\mathrm{NMI}}, \mathrm{RxD}, \operatorname{INT0}, \mathrm{INT} 1$, INT2, INT3, INT4, EXIO, EXI1, EXI2 and EXI3
*4 Specifies only when the external clock is input.
*5 This case applies to the range of 4.5 to 5.5 V supply voltage (VDD).
*6 This case applies to the range of 3.0 to 5.5 V supply voltage (VDD).

Electrical Characteristics

DC Characteristics (VDD $=4.5$ to 5.5 V)
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
High level output voltage	Vor	PA to PD, PE6, PE7, PF0 to PF6, PG to PJ, SCKO, SOO	$\mathrm{V} D \mathrm{D}=4.5 \mathrm{~V}, \mathrm{loH}=-0.5 \mathrm{~mA}$	4.0			V
			$\mathrm{V} \mathrm{DD}=4.5 \mathrm{~V}, \mathrm{loH}=-1.2 \mathrm{~mA}$	3.5			V
Low level output voltage	Vol	PA to PD, PE6, PE7, PF0 to PF6, PG to PJ, $\frac{\overline{\mathrm{SCKO}}}{\mathrm{RST}}{ }^{*}, \mathrm{SO} 0$,	$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=1.8 \mathrm{~mA}$			0.4	V
			$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=3.6 \mathrm{~mA}$			0.6	V
		PC	$\mathrm{V} D \mathrm{LD}=4.5 \mathrm{~V}$, $\mathrm{loL}=12.0 \mathrm{~mA}$			1.5	V
Input current	lihe	EXTAL	$\mathrm{V}_{\text {dD }}=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{IH}=5.5 \mathrm{~V}$	0.5		40	$\mu \mathrm{A}$
	IILE		$\mathrm{V} D \mathrm{D}=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}$	-0.5		-40	$\mu \mathrm{A}$
	liht	TEX	V DD $=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=5.5 \mathrm{~V}$	0.1		10	$\mu \mathrm{A}$
	Illt		$\mathrm{V} D \mathrm{LD}=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}$	-0.1		-10	$\mu \mathrm{A}$
	IILR	$\overline{\mathrm{RST}}^{* 2}$	V DD $=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=0.4 \mathrm{~V}$	-1.5		-400	$\mu \mathrm{A}$
	IIL	$\begin{aligned} & \text { PA to PD*3 } \\ & \text { PF0 to PF5*3, } \\ & \text { PG to PJ*3 } \end{aligned}$				-45	$\mu \mathrm{A}$
			$\mathrm{V} D \mathrm{LD}=4.5 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=4.0 \mathrm{~V}$	-2.78			$\mu \mathrm{A}$
I/O leakage current	IIz	$\begin{aligned} & \text { PA to PD*3, } \\ & \text { PE0 to PE5, } \\ & \text { PF0 to PF5*3, } \\ & \text { PF7, } \\ & \text { PG to PJ*3, } \\ & \hline \text { CSO }, \overline{\text { SCKO }}, \\ & \text { SIO, EXI2, } \\ & \text { EXI3, } \\ & \frac{\text { AN0 to AN3 }}{\text { RST }} 2 \end{aligned}$	$\begin{aligned} & V d D=5.5 \mathrm{~V} \\ & V I=0,5.5 \mathrm{~V} \end{aligned}$			± 10	$\mu \mathrm{A}$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Supply current*4	IdD	Vdd	$1 / 2$ frequency dividing clock operation VDD $=5.5 \mathrm{~V}, 16 \mathrm{MHz}$ crystal oscillation ($\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}$)		17.5	40	mA
	IDDS1		Sleep mode $\text { VDD }=5.5 \mathrm{~V}, 16 \mathrm{MHz} \text { crystal oscillation }$ $\left(\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}\right)$		1.4	8	mA
	IDDS2		Stop mode VDD $=5.5 \mathrm{~V}$, termination of 16 MHz crystal oscillation			10	$\mu \mathrm{A}$
Input capacity	Cin	PA to PD, PE0 to PE5, PF0 to PF5, PF7, PG to PJ, $\overline{\mathrm{CSO}}, \overline{\mathrm{SCKO}}$, SIO, EXI2, EXI3, AN0 to AN3, EXTAL, RST	Clock 1MHz OV for all pins excluding measured pins		10	20	pF

*1 $\overline{\text { RST }}$ pin specifies the output voltage only when the power-on reset circuit is selected with mask option.
*2 $\overline{\text { RST }}$ pin specifies the input current when the pull-up resistance is selected, and specifies the leakage current when no resistance is selected.
*3 PA to PD, PF0 to PF5 and PG to PJ pins specify the input current when the pull-up resistance is selected, and specify the leakage current when no resistance is selected.
*4 When all pins are open.

Electrical Characteristics

DC Characteristics (VDD $=3.0$ to 3.6 V)
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
High level output voltage	Vor	PA to PD, PE6, PE7, PF0 to PF6, PG to PJ, SCK0, SOO	$\mathrm{VDD}=3.0 \mathrm{~V}, \mathrm{IOH}=-0.15 \mathrm{~mA}$	2.7			V
			$\mathrm{V} \mathrm{DD}=3.0 \mathrm{~V}, \mathrm{IoH}=-0.5 \mathrm{~mA}$	2.3			V
Low level output voltage	Vol	PA to PD, PE6, PE7, PF0 to PF6, PG to PJ, SCKO, SOO, RST* ${ }^{1}$	$\mathrm{VDD}=3.0 \mathrm{~V}, \mathrm{loL}=1.2 \mathrm{~mA}$			0.3	V
			$\mathrm{VDD}=3.0 \mathrm{~V}, \mathrm{loL}=1.6 \mathrm{~mA}$			0.5	V
		PC	$\mathrm{VDD}=3.0 \mathrm{~V}, \mathrm{lol}=5.0 \mathrm{~mA}$			1	V
Input current	IIHE	EXTAL	$\mathrm{V}_{\text {dD }}=3.6 \mathrm{~V}, \mathrm{~V} \mathrm{IH}=3.6 \mathrm{~V}$	0.3		20	$\mu \mathrm{A}$
	IILE		$\mathrm{V} D \mathrm{~L}=3.6 \mathrm{~V}, \mathrm{~V}$ IL $=0.3 \mathrm{~V}$	-0.3		-20	$\mu \mathrm{A}$
	liht	TEX	$\mathrm{V} D \mathrm{~L}=3.6 \mathrm{~V}, \mathrm{VIL}=3.6 \mathrm{~V}$	0.1		10	$\mu \mathrm{A}$
	Illt		$\mathrm{V} D \mathrm{LD}=3.6 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=0.4 \mathrm{~V}$	-0.1		-10	$\mu \mathrm{A}$
	IILR	$\overline{\mathrm{RST}}^{* 2}$	$\mathrm{V} D \mathrm{D}=3.6 \mathrm{~V}, \mathrm{~V}$ IL $=0.3 \mathrm{~V}$	-0.9		-200	$\mu \mathrm{A}$
	IIL	$\begin{aligned} & \text { PA to PD*3 } \\ & \text { PF0 to } \mathrm{PF5}^{* 3}, \\ & \text { PG to } \mathrm{PJ}{ }^{* 3} \end{aligned}$				-20	$\mu \mathrm{A}$
			$\mathrm{V} D \mathrm{LD}=3.0 \mathrm{~V}, \mathrm{VIL}=2.7 \mathrm{~V}$	-1.0			$\mu \mathrm{A}$
I/O leakage current	IIz	PA to PD*3, PE0 to PE5, PF0 to PF5*3, PF7, PG to PJ*3, $\overline{\mathrm{CSO}}, \overline{\mathrm{SCKO}}$, SIO, EXI2, EXI3, AN0 to AN3 $\mathrm{RST}^{* 2}$	$\begin{aligned} & V D D=3.6 \mathrm{~V} \\ & V I=0,3.6 \mathrm{~V} \end{aligned}$			± 10	$\mu \mathrm{A}$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Supply current*4	IdD	Vdd	$1 / 2$ frequency dividing clock operation VDD $=3.6 \mathrm{~V}, 12 \mathrm{MHz}$ crystal oscillation ($\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}$)		6.5	18	mA
	IDDS1		Sleep mode $\begin{aligned} & \text { VDD }=3.6 \mathrm{~V}, 12 \mathrm{MHz} \text { crystal oscillation } \\ & \left(\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}\right) \end{aligned}$		0.5	2.0	mA
	IDDS2		Stop mode VDD $=3.6 \mathrm{~V}$, termination of 12 MHz crystal oscillation			10	$\mu \mathrm{A}$
Input capacity	Cin	PA to PD, PE0 to PE5, PF0 to PF5, PF7, PG to PJ, $\overline{\mathrm{CSO}}, \overline{\mathrm{SCKO}}$, SIO, EXI2, EXI3, AN0 to AN3, EXTAL, $\overline{\text { RST }}$	Clock 1MHz OV for all pins excluding measured pins		10	20	pF

*1 $\overline{\mathrm{RST}}$ pin specifies the output voltage only when the power-on reset circuit is selected with mask option.
*2 $\overline{\text { RST }}$ pin specifies the input current when the pull-up resistance is selected, and specifies the leakage current when no resistance is selected.
*3 PA to PD, PF0 to PF5 and PG to PJ pins specify the input current when the pull-up resistance is selected, and specify the leakage current when no resistance is selected.
*4 When all pins are open.

AC Characteristics

(1) Clock timing
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=3.0$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Conditions		Min.	Typ.	Max.	Unit
System clock frequency	fc	$\begin{aligned} & \text { XTAL } \\ & \text { EXTAL } \end{aligned}$	Fig. 1, Fig. 2	$\mathrm{VDD}=4.5$ to 5.5 V	1		16	MHz
					1		12	
System clock input pulse width	txL	XTAL	Fig. 1, Fig. 2	$\mathrm{VDD}=4.5$ to 5.5 V	28			ns
	txH	EXTAL	External clock drive		37.5			
System clock input rise time, fall time	$\begin{aligned} & \text { tcR } \\ & \text { tcF } \end{aligned}$	$\begin{aligned} & \text { XTAL } \\ & \text { EXTAL } \end{aligned}$	Fig. 1, Fig. 2 External clock	drive			200	ns
Event count input clock pulse width	$\begin{aligned} & \text { tEH } \\ & t_{\text {EL }} \end{aligned}$	$\overline{\text { EC0 }}$	Fig. 3		tsys + 50*1			ns
Event count input clock rise time, fall time	ter tef	EC0	Fig. 3				20	ms

*1 tsys indicates the three values below according to the upper two bits (CPU clock selection) of the clock control register (CLC: 00FEh).
tsys [ns] = 2000/fc (upper two bits = "00"), 4000/fc (upper two bits = "01"), 16000/fc (Upper two bits ="11")

Fig. 1. Clock timing

Fig. 2. Clock applied conditions

Fig. 3. Event count clock timing

(2) Serial transfer (CH0, CH1) ($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Conditions	Min.	Max.	Unit
$\overline{\mathrm{CS}} \downarrow \rightarrow \overline{\mathrm{SCK}}$ delay time	tocsk	$\overline{\overline{\text { SCK0 }}}$	Chip select transfer mode (SCK $=$ output mode)		1.5 tsys +200	ns
$\begin{aligned} & \hline \overline{\mathrm{CS} \uparrow \rightarrow \overline{\mathrm{SCK}}} \\ & \text { floating delay time } \end{aligned}$	tocskf	$\overline{\overline{\text { SCK0 }}}$	Chip select transfer mode (SCK $=$ output mode)		1.5tsys +200	ns
$\overline{\mathrm{CS}} \downarrow \rightarrow$ SO delay time	tocso	$\begin{array}{\|l\|} \hline \text { SOO } \\ \text { SO1 } \\ \hline \end{array}$	Chip select transfer mode		1.5tsys +200	ns
$\overline{\mathrm{CS}} \uparrow \rightarrow$ SO floating delay time	tocsof	$\begin{aligned} & \hline \text { SO0 } \\ & \text { SO1 } \end{aligned}$	Chip select transfer mode		1.5tsys +200	ns
$\overline{\mathrm{CS}}$ High level width	twhcs	$\overline{\frac{\overline{\mathrm{CSO}}}{\mathrm{CS} 1}}$	Chip select transfer mode	tsys + 200		ns
$\overline{\text { SCK }}$ cycle time	tkcy	$\overline{\frac{\text { SCK0 }}{\text { SCK1 }}}$	Input mode	2 2tsys +200		ns
			Output mode	8000/fc		ns
$\overline{\text { SCK }}$ High and Low level width	$\begin{aligned} & \text { tKH } \\ & \mathrm{t}_{\mathrm{KL}} \end{aligned}$	$\frac{\overline{\text { SCK0 }}}{\text { SCK1 }}$	Input mode	tsys + 100		ns
			Output mode	4000/fc - 50		ns
SI input setup time (for SCK \uparrow)	tsık	$\begin{array}{\|l\|l} \hline \text { SIO } \\ \text { SI1 } \end{array}$	$\overline{\text { SCK }}$ input mode	-tsys + 100		ns
			$\overline{\text { SCK }}$ output mode	200		ns
SI input hold time (for SCK \uparrow)	tksı	$\begin{aligned} & \text { SIO } \\ & \text { SI1 } \end{aligned}$	$\overline{\text { SCK }}$ input mode	2 tsys +200		ns
			$\overline{\text { SCK }}$ output mode	100		ns
$\overline{\mathrm{SCK}} \downarrow \rightarrow \mathrm{SO}$ delay time	tkso	$\begin{array}{\|l\|l\|} \hline \text { SOO } \\ \text { SO1 } \end{array}$	$\overline{\text { SCK }}$ input mode		2tsys + 200	ns
			$\overline{\text { SCK }}$ output mode		100	ns

Note 1) tsys indicates three values according to the contents of the clock control register (CLC: 00FEh) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (upper 2 bits = "00"), 4000/fc (upper 2 bits = " 01 "), 16000/fc (upper 2 bits = " 11 ")
Note 2) $\overline{\mathrm{CS}}, \overline{\mathrm{SCK}}, \mathrm{SI}$ and SO represent $\overline{\mathrm{CSO}}, \overline{\mathrm{SCKO}}, \mathrm{SIO}$ and SOO for CHO; they represent $\overline{\mathrm{CS1}}, \overline{\mathrm{SCK1}}, \mathrm{SI}$ and SO 1 for CH 1 , respectively.
Note 3) The load of $\overline{\text { SCK }}$ output mode and SO output delay time is $50 \mathrm{pF}+1 \mathrm{TTL}$.

Serial transfer (CH0, CH1)
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=3.0$ to 3.6 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Conditions	Min.	Max.	Unit
$\begin{aligned} & \overline{\mathrm{CS}} \downarrow \rightarrow \overline{\mathrm{SCK}} \\ & \text { delay time } \end{aligned}$	tocsk	$\overline{\overline{\text { SCK0 }}}$	Chip select transfer mode ($\overline{\text { SCK }}=$ output mode)		1.5 tsys +250	ns
$\overline{\overline{\mathrm{CS}} \uparrow} \rightarrow \overline{\mathrm{SCK}}$ floating delay time	tocskf	$\frac{\overline{\text { SCK0 }}}{\text { SCK1 }}$	Chip select transfer mode (SCK = output mode)		1.5 tsys +200	ns
$\overline{\mathrm{CS}} \downarrow \rightarrow$ SO delay time	tocso	$\begin{aligned} & \hline \text { SOO } \\ & \text { SO1 } \end{aligned}$	Chip select transfer mode		1.5 tsys +250	ns
$\overline{\mathrm{CS}} \uparrow \rightarrow$ SO floating delay time	tocsof	$\begin{aligned} & \hline \text { SO0 } \\ & \text { SO1 } \end{aligned}$	Chip select transfer mode		1.5 tsys +200	ns
$\overline{\mathrm{CS}}$ High level width	twhcs	$\frac{\overline{\mathrm{CSO}}}{\overline{\mathrm{CS} 1}}$	Chip select transfer mode	tsys + 200		ns
$\overline{\text { SCK }}$ cycle time	tkcy	$\overline{\text { SCKO }}$	Input mode	2tsys + 200		ns
		SCK1	Output mode	8000/fc		ns
$\overline{\text { SCK }}$ High and Low level widths	$\begin{aligned} & \mathrm{t} k \mathrm{KH}^{t_{K L}} \end{aligned}$	$\overline{\text { SCKO }}$	Input mode	tsys + 100		ns
		SCK1	Output mode	4000/fc - 100		ns
SI input setup time (for SCK \uparrow)	tsık	$\begin{aligned} & \text { SIO } \\ & \text { SI1 } \end{aligned}$	$\overline{\text { SCK }}$ input mode	-tsys + 100		ns
			$\overline{\text { SCK }}$ output mode	200		ns
SI input hold time (for SCK \uparrow)	tksı	$\begin{aligned} & \text { SIO } \\ & \text { SI1 } \end{aligned}$	$\overline{\text { SCK }}$ input mode	2tsys + 200		ns
			$\overline{\text { SCK }}$ output mode	100		ns
$\overline{\mathrm{SCK}} \downarrow \rightarrow \mathrm{SO}$delay time	tkso	$\begin{aligned} & \mathrm{SOO} \\ & \mathrm{SO} 1 \end{aligned}$	$\overline{\text { SCK input mode }}$		2tsys + 250	ns
			$\overline{\text { SCK }}$ output mode		125	ns

Note 1) tsys indicates three values according to the contents of the clock control register (CLC: 00FEh) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (upper 2 bits = "00"), 4000/fc (upper 2 bits = "01"), 16000/fc (upper 2 bits = " 11 ")
Note 2) $\overline{\mathrm{CS}}, \overline{\mathrm{SCK}}, \mathrm{SI}$ and SO represent $\overline{\mathrm{CSO}}, \overline{\mathrm{SCKO}}, \mathrm{SIO}$ and SOO for CHO ; they represent $\overline{\mathrm{CS1}}, \overline{\mathrm{SCK}}, \mathrm{SI} 1$ and SO 1 for CH 1 , respectively.
Note 3) The load of $\overline{\text { SCK }}$ output mode and SO output delay time is 50 pF .

Fig. 4. Serial transfer $\mathrm{CH} \mathbf{0}, \mathrm{CH} 1$ timing

Serial transfer (CH2)
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Conditions	Min.	Max.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy	$\overline{\text { SCK2 }}$	Input mode	1000		ns
			Output mode	8000/fc		ns
$\overline{\text { SCK }}$ High and Low level widths	$\begin{aligned} & \mathrm{t}_{\mathrm{KKH}} \\ & \mathrm{t}_{\mathrm{KL}} \end{aligned}$	$\overline{\text { SCK2 }}$	Input mode	400		ns
			Output mode	4000/fc - 50		ns
SI input setup time (for SCK \uparrow)	tsik	SI2	$\overline{\text { SCK }}$ input mode	100		ns
			$\overline{\text { SCK }}$ output mode	200		ns
SI input hold time (for $\overline{\text { SCK }} \uparrow$)	tкsı	SI2	$\overline{\text { SCK }}$ input mode	200		ns
			$\overline{\text { SCK }}$ output mode	100		ns
SCK $\downarrow \rightarrow$ SO delay time	tkso	SO2	$\overline{\text { SCK }}$ input mode		200	ns
			$\overline{\text { SCK }}$ output mode		100	ns

Note 1) tsys indicates three values according to the contents of the clock control register (CLC: 00FEh) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = "00"), 4000/fc (Upper 2 bits = "01'), 16000/fc (Upper 2 bits = " 11 ")
Note 2) $\overline{\mathrm{SCK}}, \mathrm{SI}$ and SO represent $\overline{\mathrm{SCK}}, \mathrm{SI} 2$ and SO 2 for CH 2 , respectively.
Note 3) The load of SCK2 output mode and SO2 output delay time is $50 \mathrm{pF}+1 \mathrm{TTL}$.

Serial transfer (CH2)
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=3.0$ to $3.6 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Conditions	Min.	Max.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy	$\overline{\text { SCK2 }}$	Input mode	1000		ns
			Output mode	8000/fc		ns
$\overline{\text { SCK }}$ High and Low level widths	$\begin{aligned} & \mathrm{t}_{\mathrm{KH}} \\ & \mathrm{t}_{\mathrm{KL}} \end{aligned}$	$\overline{\text { SCK2 }}$	Input mode	400		ns
			Output mode	4000/fc - 100		ns
SI input setup time (for SCK \uparrow)	tsik	SI2	$\overline{\text { SCK }}$ input mode	100		ns
			$\overline{\text { SCK }}$ output mode	200		ns
SI input hold time (for $\overline{S C K} \uparrow$)	tksı	SI2	$\overline{\text { SCK }}$ input mode	200		ns
			$\overline{\text { SCK }}$ output mode	100		ns
SCK $\downarrow \rightarrow$ SO delay time	tkso	SO 2	$\overline{\text { SCK }}$ input mode		250	ns
			$\overline{\text { SCK }}$ output mode		125	ns

Note 1) tsys indicates three values according to the contents of the clock control register (CLC: 00FEh) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = "00"), 4000/fc (Upper 2 bits = "01'), 16000/fc (Upper 2 bits = " $11 "$)
Note 2) $\overline{\mathrm{SCK}}, \mathrm{SI}$ and SO represent $\overline{\mathrm{SCK}}$, SI 2 and SO 2 for CH 2 , respectively.
Note 3) The load of $\overline{\text { SCK2 }}$ output mode and SO2 output delay time is 50 pF .

Fig. 5. Serial transfer CH2 timing

(3) A / D converter characteristics $\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=3.0$ to $5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Conditions		Min.	Typ.	Max.	Unit
Resolution							8	Bits
Linearity errror			$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=\mathrm{AVDD}=\mathrm{AV} \mathrm{VEF} \\ & =5.0 \mathrm{~V} \\ & \mathrm{Vss}=\mathrm{AVSS}=0 \mathrm{~V} \end{aligned}$				± 3	LSB
Zero transition voltage	VZT* ${ }^{*}$				-10	10	70	mV
Full-scale transition voltage	$\mathrm{VFT}^{*}{ }^{*}$				4910	4970	5030	mV
Linearity errror			$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=\mathrm{AVDD}=\mathrm{AV} \text { REF } \\ & =3.3 \mathrm{~V} \\ & \mathrm{~V} S \mathrm{AV}=\mathrm{AVSS}=0 \mathrm{~V} \end{aligned}$				± 5	LSB
Zero transition voltage	Vz7*1				-10	6.5	70	mV
Full-scale transition voltage	$\mathrm{VFT}^{*}{ }^{\text {2 }}$				3215	3280	3345	mV
Convertion time	tconv				26/fadc*3			$\mu \mathrm{s}$
Sampling time	tsamp				6/fadc*3			$\mu \mathrm{s}$
Reference input voltage	Vref	AVref	$\mathrm{V} D \mathrm{D}=\mathrm{AVDD}=4.5$ to 5.5 V		AVdd - 0.5		AVdd	V
			$\mathrm{V} D \mathrm{D}=\mathrm{AVDD}=3.0$ to 3.6 V		AVdd - 0.3		AVdd	V
Analog input voltage	VIAN	AN0 to AN7			0		AVref	V
AVref current		AVref	Operation mode	$\mathrm{V} D \mathrm{D}=5.5 \mathrm{~V}$		0.6	1.0	mA
	Trer			$\mathrm{V} D \mathrm{D}=3.6 \mathrm{~V}$		0.4	0.7	mA
	Irefs		Sleep mode Stop mode				10	$\mu \mathrm{A}$

Fig.6. Definition of A/D converter terms

${ }^{*} 1$ Vzt: Value at which the digital conversion value changes from 00h to 01h and vice versa.
*2 VFT: Value at which the digital conversion value changes from FEn to FFh and vice versa.
*3 fadc indicates the below values due to the contents of bit 6 (CKS) of the A/D control register (ADC: 00F9h).

PS1 selected $\quad f_{A D C}=\mathrm{fc}$
PS2 selected $\quad f_{A D C}=\mathrm{fc} / 2$
(4) Interruption, reset input ($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=3.0$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Conditions	Min.	Max.	Unit
External interruption High, Low level width	$\begin{aligned} & t_{I H} \\ & t_{I L} \end{aligned}$	INTO INT1 INT2 INT3 INT4 $\overline{\text { NMI }}$		1		$\mu \mathrm{S}$
Reset input Low level width	trsL	$\overline{\mathrm{RST}}$		32/fc		$\mu \mathrm{s}$

Fig. 7. Interruption input timing

Fig. 8. $\overline{\operatorname{RST}}$ input timing

(5) Power-on reset*1
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Conditions	Min.	Max.	Unit
Power supply rise time	t_{R}	VDD	Power-on reset	0.05	50	ms
	Power supply cut-off time			Repetitive power-on reset	1	

*1 Specifies only when the power-on reset function is selected.
Power-on reset function can be selected only for the supply voltage range of 4.5 to 5.5 V .

Fig. 9. Power-on reset

Vdd

Turn the power on smoothly.

Appendix

Fig. 10. Recommended oscillation circuit
(i) Main clock

Manufacture	Model	fc (MHz)	$\mathrm{C}_{1}(\mathrm{pF})$	C 2 (pF)	Rd (Ω)	Circuit example
RIVER ELETEC co., LTD.	HC-49/U03	8.00	10	10	0	(i)
		10.00	5	5		
		12.00				
		16.00				
KINSEKI LTD.	HC-49/U (-S)	8.00	22 (15)	(15)	0	(i)
		10.00				
		12.00	15	15		
		16.00	12	12		

Mask Option Table

Item	Content	
Reset pin pull-up resistor	Non-existent	Existent
Power-on-reset circuit*1	Non-existent	Existent

${ }^{* 1}$ Power-on-reset circuit can not be selected when the supply voltage (VDD) ranges from 3.5 to 4.5 V .

Characteristics Curve

Idd vs. Vdd

Idd vs. VdD
(fc $=12 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Typical)

IDD vs. fc

IDD vs. fc
(VDD $=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Typical)

Package Outline
Unit: mm
100PIN QFP (PLASTIC)

NOTE: Dimension "*" does not include mold protrusion.

DETAIL A

SONY CODE	LQFP-100P-L01
EIAJ CODE	*QFP100-P-1414-A
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY/PHENOL RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE WEIGHT	-

[^0]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

